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Abstract 

Direct measurements of many properties of real-world systems are not possible. Information on these properties
can only be inferred from the result of measurements of other quantities which may be measured directly. The 
process comprising direct measurements of certain characteristics of the object followed by inference on its
sought-for properties from the directly measured characteristics based on a mathematical relation between 
unknown properties and measured characteristics is called indirect measurement, whereas inference is referred to
as an inverse problem in indirect measurement. 
In general an inverse problem consists either in determining the characteristics of a system under study, driven 
by controlled or known exciting signals, or in reconstructing exciting signals acting on a system whose internal
characteristics are known. In both cases, it is formulated in terms of a mathematical model relating unknown and
measured characteristics and signals. One can distinguish continuous and discrete inverse problems, depending
on whether the measured and sought-for quantities are represented by functions or by vectors (tuples),
respectively. Very many nontrivial inverse problems in indirect measurements are ill-posed which means that 
they have no solution or the solution exists but is non-unique or unstable, i.e. very small disturbances in the 
measurement data result in large disturbances in the result of inference. High error amplification is referred to as 
ill-conditioning. Ill-posedness and ill-conditioning result from the lack of information on sought-for quantities, 
carried by the measurement data. Therefore, a priori knowledge about the space of admissible solutions has to 
be employed for solving such inverse problems. 
The theory of inverse problems and – in particular – effective numerical methods for solving them are of great 
importance for measurement science and technology; they are crucial for the development of many
measurement, imaging and diagnostic techniques. Indirect measurements may be formulated using various
mathematical models of the measurement object followed by a measuring system. A broad class of inverse
problems, being of importance for indirect measurements, is formulated in terms of Fredholm integral equations 
of the first kind. These problems are ill-posed and strongly ill-conditioned after discretization. Therefore, 
sophisticated inverse procedures, utilizing various kinds of a priori knowledge, are applied for solving them. 
In this paper, theoretical and numerical aspects of inverse problem in indirect measurements are reviewed. In
particular the concept of generalized solution (pseudosolution) and the notion of well-posedness is presented and 
analysed. The review is focused on inverse problems formulated in terms of Fredholm integral equations of the
first kind: a general presentation of such problems, at the level of functional analysis, is followed by an overview
of numerical aspects of their discretized versions. A concise presentation of selected groups of numerical
methods, called inverse methods, for solving inverse problems is also provided. 

Keywords: inverse problem, indirect measurements, ill-posedness, ill-conditioning, Fredholm integral equation 
of the first kind, inverse procedures, a priori information, regularization, Bayesian inferring. 
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1.Introduction 
 
1.1. Motivation behind the review paper 
 

The review paper aims at presenting inverse problems in indirect measurements, focusing 
on inverse problems formulated in terms of Fredholm integral equations of the first kind. 

The inverse problem is explored in a generic way apart from any specific measurement 
technique or measurement system, although examples of important measurement, imaging 
and diagnostic techniques, based on inverse problem formulated in terms of Fredholm integral 
equation of the first kind, are briefly discussed. In the paper general properties, such as ill-
posedness and ill-conditioning of this class of inverse problems, are investigated and 
numerical methods of solving their discretized version are discussed. 

The review paper is motivated by the increasing importance of the inverse problems in 
indirect measurements formulated in terms of Fredholm integral equation of the first kind for 
measurement science and technology. Therefore, comprehending the generic theory of these 
problems and mastering sophisticated and effective methods of solving them are crucial for 
development and implementation of many modern measurement techniques and systems. The 
paper provides the review of relevant extensive bibliography from many areas and aims at 
presenting the fundamental concepts in a generic, not area-specific way. 
 
1.2. Overview of the paper 
 

The review paper is structured as follows. At the beginning (Section 2) it presents 
concisely the basic concepts of inverse problems in indirect measurements. In Section 3 the 
general mathematical formulation of the inverse problem in indirect measurement, the 
concept of generalized solution, also known as quasisolution, and the notion of well-
posedness are discussed. In the following sections the paper focuses on the inverse problem 
formulated in terms of Fredholm integral equation of the first kind. In  Section 4 the Fredholm 
problem is explored at the level of functional analysis and an insight into its ill-posedness is 
provided. In Section 5 the discretized form of the inverse problem of Fredholm type is 
presented and its ill-conditioning is investigated. Finally, Section 6 provides a concise 
presentation of selected groups of numerical inverse procedures. Section 7 presents the most 
important conclusions of the review paper. 

 
1.3. Mathematical notation 
 

The following notation convention is used throughout the review: 
− x, y, … are quantities considered in generic way, i.e. either functions or vectors or also 

real-valued scalar variables; 
− x, y, … are vectors of real-valued variables; 
− ix , iy  … are elements of vectors x, y; 
− X, Y, … are matrices of real-valued variables; 
− ijx , ijy , … are elements of the matrices X, Y; 
− x̂ , ŷ , … are estimates of the vectors x, y; …; 
− x~ , y~ , … are noisy versions of the vectors x, y; …; 

All the abbreviations and symbols used throughout this review are defined at their first 
appearance. 
 



2. Basic concepts of inverse problems in indirect measurements 
 
2.1. Inverse problems in indirect measurements 
 

Direct measurements of many properties of real-world complex systems are not possible 
because of lack of appropriate measurement elements, particularly sensors and transducers, 
impossibility of locating elements of measurement system in appropriate places of the system 
or due to ethical reasons. These properties can only be inferred from the results of 
measurements of other quantities describing the system under study which may be measured 
directly. Realizing a direct measurement of certain characteristics of the object, followed by 
inference on its sought-for properties from the directly measured characteristics based on the 
mathematical relation between unknown properties and measured characteristics, is called 
indirect measurement [1]. The inference process is referred to as an inverse problem in 
indirect measurement. 

Generally speaking, the quantities inferred in the indirect measurements are of one of two 
types: 
− characteristics of the system under study represented by some functions, operators or a set 

of parameters in the case the system is driven by a controlled or known exciting signal; 
− exciting signals acting on the system whose internal characteristics are known. 

In this connection, the inverse problem in the first case can be defined as determining 
characteristics of the system or in the special case when the sought-for characteristics are 
represented by parameters – as parameter estimation. The inverse problem in the second case 
can be defined as signal reconstruction. Both kinds of inverse problem require that the 
structure of the relation between the sought-for quantities and the directly measured quantities 
is known. This relation is called a mathematical model of indirect measurements. 

The notion of indirect measurement is deeply rooted in measurement science and 
technology and therefore it is used throughout the present review paper. However, it is 
necessary to mention that this concept was removed from the newest version of the 
“International vocabulary of metrology – basic and general concepts and associated terms” [2] 
due to the lack of fundamental distinction between indirect and nontrivial direct 
measurements. Within the paper the term “indirect measurement” refers to the process 
comprising direct measurement of certain quantity followed by explicit computations of 
sought-for quantity based on results of direct measurements. 

The mathematical model of indirect measurements very frequently is thought of as an 
operator mapping sought-for quantities into directly measured quantities. In the typical case 
this operator is assumed to be known, however inverse problems are considered where the 
operator represents the sought-for characteristics or the operator is unknown together with the 
sought-for quantity. One can distinguish continuous and discrete inverse problems. In the 
typical case, when the operator in the mathematical model of indirect measurement is 
assumed to be known, the directly measured and sought-for quantities are represented by 
functions for continuous inverse problem and by vectors for discrete inverse problem. The 
discrete inverse problems arise in parameter estimation or as a result of discretization of 
continuous inverse problem. 

The mathematical model of indirect measurements can assume various forms. Very 
important from the application point of view are continuous models formulated in terms of 
integral operators both nonlinear such as Wiener operator or Hammerstein operator and linear 
such as Fredholm operator or Volterra operator. Discretization of continuous models 
expressed by linear operators yields systems of linear algebraic equations. The problem of 
parameter estimation which is an example of the discrete inverse problem is also expressed by 



a system of linear algebraic equations. Mathematical modelling of measurement systems and 
signals is discussed in [3] and [4]. 

Inference of unknown quantities from the results of direct measurements of some other 
quantities is based on the information on sought-for quantities carried by the measurement 
data. Unfortunately, in the case of numerous nontrivial inverse problems in indirect 
measurements this information is insufficient for determining sought-for quantities in a 
unique way and with satisfactory accuracy. In other words, the condition of agreement of the 
sought-for solution with measurement data within the framework of given measurement 
uncertainty, understood as satisfying by the sought-for solution the mathematical model 
relation for these measurement data, does not determine this solution uniquely and accurately 
enough. It manifests itself in a very wide uncertainty interval of the solution even for very 
narrow uncertainty interval of the measurement data. This is very often called measurement 
error amplification or sensitivity to measurement error because even very small disturbances 
of the measurement data result in large disturbances of inferred corresponding sought-for 
quantities. This problem affecting the solution of an inverse problem is referred to as 
instability. The inverse problem which does not have any solution or the solution exists but is 
non-unique or is unstable is called an ill-posed problem. 

Because the ill-posedness results from deficiency of information on sought-for quantities 
carried by measurement data in order to determine with satisfactory accuracy the unique 
solution of the inverse problem, additional a priori information on sought-for quantities is 
needed. Unstable problems can be thought of as quasi-underdetermined problems since the 
condition of agreement of the sought-for quantity with measurement data expressed by the 
mathematical model determines a very wide range of solutions. Therefore the a priori 
information on the sought-for solution very frequently assumes the form of additional 
constraining conditions imposed on the sought-for solution which enable to choose one “best” 
solution from the multitude of solutions. 

Many techniques of solving ill-posed inverse problems called inverse methods, techniques, 
procedures or algorithms exist that apply various forms of a priori information. 

The inverse problem in indirect measurements can be explored from various perspectives: 
− topology and functional analysis [5]; 
− numerical analysis; 
− statistics – statistical inference, estimation theory and information theory [1, 6]. 

This branch of knowledge is also strongly related to signal and image processing [7, 8]. 
Moreover, it makes use of methods of artificial intelligence such as neural networks and 
genetic algorithms [9-12] as well as of classical and modern optimization techniques [6]. 

Inverse problems theory and in particular development of effective inverse techniques are 
of great importance for the measurement science and technology. Some of modern 
measurement, imaging or diagnostic techniques based on indirect measurements, such as 
imaging of the interior of the objects based on measurements performed on their surfaces or 
in remote exterior region (e.g. various types of tomography – optical, microwave, X-ray and 
acoustic tomography utilized in medicine, engineering and Earth sciences) or remote sensing, 
would not be feasible at all without efficient, sophisticated methods developed by the inverse 
problems theory. Many measurement techniques which were considered to be not realizable 
because of ill-posedness are being implemented thanks to new inverse algorithms addressing 
ill-posedness. The importance of the inverse problem in indirect measurements is proved by 
the great number of applications in various branches of measurement technology, e.g. in 
measuring road traffic parameters [13], weighing moving vehicles [14, 15], measuring the 
parameters of optical elements [16], identification of models of electronic elements and 
systems and estimation of parameters of these models [17, 18] and others [19]. 



2.2. Inverse problems formulated in terms of Fredholm integral equations of the first kind 
 

A broad class of continuous linear inverse problems being of importance for measurement 
science and technology, considerable practical meaning is formulated in terms of Fredholm 
integral equations of the first kind. 

Inverse problems of this type arise in many areas, such as: 
− computerized transmission tomography utilized in medicine, engineering and science 

consisting in determining the spatial distribution of a certain physical quantity inside the 
object under study and thereby the internal structure of this object, based on measurements 
of transmission of some physical excitation like radiation, acoustic (or in particular 
seismic) waves or electrical current [5, 20, 21]; 

− geophysical researches (including exploration of mineral deposits) such as [20]: 
• earthquake location and determination of acoustic wave velocity structure of the Earth 

from travel time data; 
• determination of velocity structure of the Earth from seismic surface waves; 
• determination of attenuation structure of the Earth from seismic waves; 
• determination of the density and magnetization structure of the Earth from gravimetric 

and geomagnetic data respectively; 
• remote sensing of the atmosphere: determining the temperature profile from remote 

radiance measurements, determining the composition from radiometric and 
spectrophotometric measurements as well as determining a particulate structure from light 
scattering measurements [22]; 

− spectrophotometric researches applied in qualitative and quantitative analysis of the 
composition of chemical substances [23-25]; 

− particle sizing, i.e. determining particle size distribution of dispersed phase of dispersed 
systems based on various physical properties of dispersed systems such as aerodynamic, 
electrical, diffusion and optical properties [6, 9-12, 26-32] which is the subject of research 
conducted by authors [33-40]; 

− digital signal processing, including images processing, within the problems of signal 
reconstruction and denoising as well as correction of static and dynamic characteristics of 
measurement sensors and transducers. 
It can be proved that the inverse problem formulated in terms of Fredholm integral 

equation of the first kind is unstable and thereby an ill-posed problem. Hence, solving this 
problem requires using inverse techniques which apply a priori knowledge about the sought-
for solution. In order to enable numerical solving the problem needs to be discretized i.e. 
continuous functions need to be represented by the vectors (tuples) of values. Discretization 
of the Fredholm integral equation of the first kind yields a system of linear algebraic 
equations. Ill-posedness of the continuous problem results in numerical ill-conditioning of the 
system of linear algebraic equations. 
 
2.3. Numerical methods for solving inverse problems formulated in terms of Fredholm 
integral equation of the first kind 
 

Many numerical inverse procedures were elaborated for solving discretized inverse 
problem formulated in terms of Fredholm integral equation of the first kind. Each of these 
methods applies a specific form of a priori information addressing ill-posedness and ill-
conditioning. One can distinguish several groups of the inverse techniques: linear methods, 
nonlinear iterative methods, mixed (linear-nonlinear) methods, methods utilizing artificial 
neural networks and methods based on Bayesian statistical inference. 



3. Mathematical formulation of inverse problems in indirect measurements 
 
3.1. General mathematical model of indirect measurements 
 

The inverse problem in indirect measurement consists in determining certain 
characteristics of the object under study represented by the quantity g, further on called 
sought-for quantity, on the basis of another quantity h obtained as a result of direct 
measurements and called measurement data, assuming known mapping K between the 
quantity  g and the quantity h: 
                                                               ( ) KggKh == .                                               (3.1.1) 
 

Quantities g and  h can be represented by: 
− functions ( )xg  and ( )yh  respectively in the case of continuous inverse problem, 
− vectors qR∈g  and pR∈h  respectively, where nR  – n dimensional Euclidean space, in 

the case of a discrete inverse problem. 
Equation (3.1.1) is the general mathematical model of indirect measurements. 

 
3.2. Generalized solution (quasisolution) of the inverse problem in indirect measurements 
 

Let us assume generally that g belongs to metric space G and h belongs to metric space H. 
Then K  is the operator mapping the space G into the space H. 

As a result of measurement an approximation of h is obtained which is denoted h~ . Hence, 
h~  in general does not belong to the image of the operator K. In this connection, the equation: 

 

                                                                Kgh =
~                           (3.2.1) 

 

may not have the solution Gg ∈  for arbitrary Hh ∈
~  [41]. 

If the solution Gg ∈  does not exist for arbitrary Hh ∈
~ , an approximate solution of the 

equation (3.2.1) can be found. For that purpose the concept of so called generalized solution 
(quasisolution) can be employed which is defined as the quantity Gg ∈ˆ  for which a metric 
(distance) ( )hgKH

~,ˆρ  attains its greatest lower bound [41]: 
 

                                                ( ) ( )hKghgK HGgH
~,inf~,ˆ ρρ

∈
= .                        (3.2.2) 

 

In the case that equation (3.2.1) has a solution Gg ∈  in an usual sense it coincides with 
the generalized solution given by the expression (3.2.2) [41]. 
 
3.3. Well-posedness of the inverse problem 
 

Even if the unique generalized solution Gg ∈ˆ  exists for arbitrary Hh ∈
~  and can be 

expressed as: 

                                                             hRg ~ˆ = ,                                                       (3.3.1) 
 

where R – operator, very frequently this solution is not stable in the spaces ( )HG, . The 
problem of determining the solution (generalized solution) is said to be stable on the pair of 
metric spaces ( )HG,  if for every positive number ε  a positive number exists ( )εδ  such that 
the inequality ( ) ( )εδρ ≤21

~,~ hhH  implies ( ) ερ ≤21 ˆ,ˆ ggG , where [41]: 



                                                            11
~ˆ hRg = ,                                                      (3.3.2) 

 

                                                            22
~ˆ hRg =                                                       (3.3.3) 

and 
                                       Gg ∈1ˆ , Gg ∈2ˆ , Hh ∈1

~ , Hh ∈2
~ .                                  (3.3.4) 

 
In other words stability of determining the solution of the problem (3.2.1) means that the 

solution given by the expression (3.3.1) depends continuously on the measurement data h~ . 
Stability of the solution of the inverse problem gives contribution to a broader property 

called well-posedness. The problem of determining the solution (generalized solution) Gg ∈ˆ  
of the equation (3.2.1) based on the measurement data Hh ∈

~  is said to be well-posed on the 
pair of metric spaces ( )HG,  if the following three Hadamard conditions are satisfied [41-45]: 
1. for every measurement data Hh ∈

~  a solution Gg ∈ˆ  exists; 
2. the solution is unique; 
3. the problem is stable on the pair of metric spaces ( )HG, . 

Inverse problems and other mathematical problems not satisfying the above-mentioned 
conditions are called ill-posed problems [41-44]. 

As it was mentioned above the equation (3.2.1) may not have the solution Gg ∈ˆ  for 
arbitrary data Hh ∈

~  because h~  may not belong to the image of the operator K due to being 
corrupted by measurement errors. In this case the condition 1 of well-posedness is violated. 
Moreover, even if the solution (generalized solution) exists, very frequently it is unstable in 
the spaces ( )HG,  which means that the condition 3 of well-posedness is violated. Thereby, a 
vast majority of non-trivial inverse problems in indirect measurements are ill-posed problems 
[41]. 

 
4. Inverse problem formulated in terms of Fredholm integral equation of the first kind 
 
4.1. Formulation of the inverse problem in terms of Fredholm integral equation of the first 
kind 
 

A broad class of inverse problems, being of great importance for indirect measurements, is 
formulated in terms of Fredholm integral equation of the first kind [41, 42, 46]: 
 

                                   ( ) ( )[ ] ( ) ( )∫==
max

min

d,
x

x

xxgxyKxgKyh ,         maxmin yyy ≤≤ .                     (4.1.1) 

 
This type of problems represents linear inverse problems. In this case the operator K  from 

the general equation (3.1.1) assumes the special form of the integral operator of Fredholm 
type. 
 
4.2. Ill-posedness of the inverse problem formulated in terms of Fredholm integral equation 
of the first kind 
 

In the present section ill-posedness of the inverse problem formulated in terms of 
Fredholm integral equation of the first kind is demonstrated. 



Let us assume that the solution ( )xg  of the equation (4.1.1) belongs to the space G of 
functions continuous on the interval [ ]maxmin , xx  and that changes in the solution ( )xg  are 
measured in the corresponding C -metric defined by [41]: 
 

                                            ( )
[ ]

( ) ( )xgxggg
xxxG 21,21

maxmin

max, −=
∈

ρ .                                       (4.2.1) 
 

Let us also assume that the left-hand member ( )yh  of the equation (4.1.1) belongs to the 
space H of functions square-integrable on the interval [ ]maxmin , yy  and that changes in ( )yh  
are measured in the corresponding 2L -metric defined by [41]: 

                                             ( ) ( ) ( )[ ]
2

1

2
2121

max

min

d,












−= ∫
y

y
H yyhyhhhρ .                                   (4.2.2) 

 
Solution of the equation (4.1.1) in the usual sense is unstable on the pair of metric spaces 

( )HG, . In order to prove it, let us denote: 

                                                           ( ) ( ) ( )∫=
max

min

d, 11

x

x

xxgxyKyh .                                       (4.2.3) 

It can be noted that: 

                                                           ( ) ( ) xAxgxg ωsin12 +=                                           (4.2.4) 
 
is a solution of equation (4.1.1) with left-hand member: 
 

                                              ( ) ( ) ( )∫+=
max

min

dsin,12

x

x

xxxyKAyhyh ω .                                   (4.2.5) 

 
According to the Eq. (4.2.1) and (4.2.4) the change in the solution of the equation (4.1.1) is 

given by the formula: 
 

                             ( )
[ ]

( ) ( )
[ ]

AxAxgxggg
xxxxxxG ==−=

∈∈
ωρ sinmaxmax,

maxminmaxmin ,21,21 .             (4.2.6) 
 
According to the equation (4.2.2) and (4.2.5) the change in the left-hand member of the 
equation (4.1.1) is given by the equation: 
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1
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x
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H yxxxyKAyyhyhhh ωρ .   (4.2.7) 

 

Because if ∞→ω , ( ) 0, 21 →hhHρ , for any number A  the change in the left-hand member 
measured by ( )21, hhHρ  can be made arbitrarily small without preventing the change in the 
corresponding solution measured by ( )21, ggGρ  from being arbitrarily great [41]. This proves 
that the solution of the equation (4.1.1) is unstable on the pair of metric spaces ( )HG,  and 
thereby the inverse problem formulated in terms of Fredholm integral equation of the first 
kind is ill-posed [6, 41, 42, 45, 46]. 

The same conclusion can be drawn having assumed that the solution ( )xg  of the equation 
(4.1.1) belongs to the space G of functions square-integrable on the interval [ ]maxmin , xx  and 
that changes in the solution ( )xg  are measured in the corresponding 2L -metric [41]. 



4.3. Causes of ill-posedness of the inverse problem formulated in terms of Fredholm 
integral equation of the first kind 
 

Insight into causes of ill-posedness of the inverse problem formulated in terms of 
Fredholm integral equation of the first kind can be obtained by analyzing it at the level of 
functional analysis. 

Let us assume that the function ( )xg  in the equation (4.1.1) belongs to the Hilbert space 

1H  being the space [ ]maxmin2 , xxL  of all functions square-integrable in the interval [ ]maxmin , xx  
with scalar product defined by the formula: 

                                                   ( ) ( ) ( ) ( )∫=
max

min

1
d,

x

x
H

xxuxtxuxt .                                           (4.3.1) 

 

Let us assume that the function ( )yh  in the equation (4.1.1) belongs to the Hilbert space 

2H  being the space [ ]maxmin2 , yyL  of all functions square-integrable in the interval [ ]maxmin , yy  
with scalar product defined by the formula: 

                                                 ( ) ( ) ( ) ( )∫=
max

min

2
d,

y

y
H

yyuytyuyt .                                           (4.3.2) 

 

Additionally, let us assume that the kernel ( )xyK ,  of the integral equation (4.1.1) is 
square-integrable, i.e.: 

                                                     ( )[ ] ∞<









∫ ∫
max

min

max

min

dd, 2
y

y

x

x

yxxyK                                            (4.3.3) 

 

and that the integral operator 21: HHK →  defined by the equation (4.1.1) is a compact 
operator [42]. Then functions ( )yun  and ( )xvn  exist, called singular functions, and real 
numbers nσ , called singular values, such that 021 >≥≥ …σσ , 0→nσ  when ∞→n  and 
[42, 47]: 

                                        ( )( ) ( ) ( ) ( )yuxxvxyKyKv nn

x

x
nn σ== ∫

max

min

d, ,                                     (4.3.4) 

 

                                      ( )( ) ( ) ( ) ( )xvyyuxyKxuK nn

y

y
nn σ== ∫∗

max

min

d, ,                                     (4.3.5) 

 

where ∗K  – operator adjoint to the operator K. Functions ( )xvn  form the orthonormal basis in 
the domain of the operator K – space 1H , whereas functions ( )yun  form the orthonormal 
basis in the image of the operator K – space 2H . In this connection, the function ( ) 1Hxg ∈  
and the function ( ) 2Hyh ∈  can be represented by the following expansions – Fourier series 
respectively: 

                                                          ( ) ( )∑
∞

=

=
1n

nn xvgxg ,                                                    (4.3.6) 

 

                                                           ( ) ( )∑
∞

=

=
1n

nn yuhyh                                                     (4.3.7) 

 



where: 

                                               ( ) ( ) ( ) ( )∫==
max

min

1
d,

x

x
nHnn xxvxgxvxgg ,                                  (4.3.8) 

                                               ( ) ( ) ( ) ( )∫==
max
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2
d,

y

y
nHnn yyuyhyuyhh .                                 (4.3.9) 

 
Substituting expressions (4.3.6) and (4.3.7) to the equation (4.1.1) and applying relation 

(4.3.4) one obtains [42, 47]: 
                                                                         nnn gh σ= ,                                               (4.3.10) 
and consequently: 

                                           ( ) ( )
( ) ( )
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=
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==
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n
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n
n

n
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xvhxg
σσ

.                       (4.3.11) 

 
The expansion (4.3.11), called the Picard series, determines solution of the inverse problem 

(4.1.1). The condition of existence of this solution is convergence of the Picard series, which 
can be strictly expressed as [42]: 
 

                                                           
( ) ( )

∞<∑
∞

=

2

1

2
,

n n

Hn yuyh

σ
.                                       (4.3.12) 

 
The condition (4.3.12) is referred to as the Picard criterion [42]. 
Very frequently the kernel function ( )xyK ,  in the Fredholm integral equation of the first 

kind (4.1.1), which expresses the inverse problem, is “smooth”, i.e. it varies relatively slowly 
with x. Hence, from a qualitative point of view the integral operator K causes “smoothing” of 
the function ( )xg . More precisely, it can be expressed by two general properties frequently 
noticed in the case of smoothing integral operators [46]: 
− the singular values nσ  decay gradually to zero with n; 
− the singular functions ( )yun  and ( )xvn  tend to have a more and more oscillatory nature, 

i.e. more and more sign changes. 
Hence, Fourier expansions (4.3.6) and (4.3.7) are decompositions of the functions ( )xg  

and ( )yh  respectively on orthogonal oscillatory components of frequencies increasing with n. 
According to the formula (4.3.10) the integral operator K can be treated as a filter which 
dampens high-frequency oscillations of the function ( )xg  as a result of multiplication of 
coefficients ng  for greater n by very small singular values nσ  which yields very small 
coefficients nh . Therefore, the measurement data ( )yh  is almost insensitive to the high-
frequency oscillations in the function ( )xg  even if they have considerable magnitude. On the 
other hand, solving the inverse problem causes amplification of high-frequency oscillations 
[6, 46]. 

As a result of measurement an approximation of ( )yh  is obtained which is denoted ( )yh~ . 
Assuming that measurement errors and round-off errors corrupting the function ( )yh  are 
additive random errors represented by the stochastic process ( )ye , one can note: 
 

                                                                      ( ) ( ) ( )yeyhyh +=
~ .                                     (4.3.13) 

 



Replacing the function ( )yh  in the expression (4.3.11) by the function ( )yh~  given by the 
expression (4.3.13) yields the solution ( )xĝ  determined for measurement data ( )yh~  [42]: 
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       (4.3.14) 

 

The random noise ( )ye  can be considered as a “wideband” signal in terms of Fourier 
expansion into functions ( )yun , i.e. the coefficients ( ) ( )

2
,

Hn yuye  of its expansion into 

functions ( )yun  are approximately constant with n. On the contrary, the function ( )yh  is 
smooth, i.e. the coefficients ( ) ( )

2
,

Hn yuyh  of its expansion into functions ( )yun  decay 

quickly with n. As a result within the process of solving the inverse problem, the high-
frequency components originating from the noise ( )ye  are amplified the most because of 
dividing the coefficients ( ) ( )

2
,

Hn yuye  by insignificant singular values nσ  for big n. Hence, 

the coefficients ( ) ( ) nHn yuyh σ
2

,~  of the expansion of the solution ( )xĝ  into functions 

( )xvn  are close to the coefficients of the true solution ( ) ( ) nHn yuyh σ
2

,  merely for small n. 

For big n these coefficients are prevailed by noise contribution ( ) ( ) nHn yuye σ
2

, , because 

the coefficients for the true solution ( ) ( ) nHn yuyh σ
2

,  decay quickly to zero with n. This 

leads to a tremendous increase of the error of the solution ( )xr  for even a small 

measurement error ( )ye  which proves so called ill-conditioning of the inverse problem that 
is inherently related to the ill-posedness [42]. 

Formally, the condition of existence of the solution ( )xĝ  is the Picard criterion: 
 

                                                       
( ) ( )

∞<∑
∞

=

2

1

2

,~

n n

Hn yuyh

σ
.                                          (4.3.15) 

 

According to the criterion the Fourier coefficients ( ) ( )
2

,~
Hn yuyh  need to vanish with n 

faster than the singular values nσ  [42]. Violating the condition (4.3.15) indicates ill-
posedness, whereas the bigger the terms of the series (4.3.15) for big n the more ill-
conditioned the problem is [42]. 
 
 
 
 



5. Discretized form of inverse problems formulated in terms of Fredholm integral 
equation of the first kind 
 
5.1. Discretization of inverse problems formulated in terms of Fredholm integral equation 
of the first kind 
 

In order to apply numerical inverse procedures the inverse problem formulated in terms of 
Fredholm integral equation of the first kind has to be discretized, i.e. functions ( )xg  and ( )yh  
in the equation (4.1.1) have to be represented by the vectors (tuples) of values. Numerous 
methods of discretization of the equation (4.1.1) exist [6, 42]. 

The Galerkin method consists in approximating the function ( )xg , which is assumed to 
belong to the infinite-dimensional space [ ]maxmin2 , xxL , by its orthogonal projection to the 
finite-dimensional subspace of the space [ ]maxmin2 , xxL  spanned by linearly independent 
functions ( )xjϕ , qj ,,1…=  [42]: 

                                                         ( ) ( )∑
=

≈
q

j
jj xgxg

1

ˆ ϕ .                                                    (5.1.1) 

 

The solution of the problem is the function ( )xĝ  for which ( )[ ]xgK ˆ  and ( )yh  have identical 
orthogonal projection to the finite-dimensional subspace of the space [ ]maxmin2 , yyL  spanned 
by linearly independent functions ( )yiψ , pi ,,1…=  [42]: 
 

                                            ( )( ) ( ) ( ) ( )yyhyygK ii ψψ ,,ˆ = ,          pi ,,1…= .                  (5.1.2) 
 
Substituting the expression (5.1.1) to the equation (5.1.2) one obtains: 
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,    pi ,,1…= .       (5.1.3) 

 
Denoting: 
 

                                                     ( ) ( )yyhh ii ψ,= ,      pi ,,1…=                                    (5.1.4) 
and 
                                  ( )( ) ( )yyKk ijij ψϕ ,= ,        pi ,,1…= , qj ,,1…= ,                        (5.1.5) 
 
yields the equation [42]: 
                                                                    Kgh = .                                                          (5.1.6) 

The most straightforward choice of the functions ( )yiψ  is: 
 

                          ( ) ( )ii yyy −= δψ ,    maxmin yyy i ≤≤ ,           pi ,,1…=                            (5.1.7) 
 

where ( )yδ  – Dirac distribution, iy  – measurement points. This leads to so called collocation 
method, which consists in representing the function ( )yh  by the vector (tuple) of its values in 
collocation points iy , corresponding to measurement points [42]: 
 

                                      ( )ii yhh = ,     maxmin yyy i ≤≤ ,     pi ,,1…= .                              (5.1.8) 
 



Another way of discretizing the right-hand member of the equation (4.1.1) is to 
approximate the integration by a numerical quadrature, which consists in approximating the 
integral by the weighted sum of values of the function under integral [42]: 
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                                       (5.1.9) 

 

where jw  – weighting coefficients. The points jx  and corresponding weights can be chosen 
in various ways. 

In the midpoint rule the interval [ ]maxmin , xx  is divided into q equal subintervals, each of the 
length [42]: 

                                                           
q

xxx minmax −
=∆ .                                                   (5.1.10) 

The j -th subinterval is [42]: 
 

                                            ( )[ ]xjxxjx ∆+∆−+ minmin ,1 ,      qj ,,1…= .                       (5.1.11) 
 

Each of the points jx  is the midpoint of the j -th subinterval [42]: 
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The midpoint rule consists in approximating the function under integral by the piecewise 

constant function, which for consecutive subintervals assumes constant values equal to the 
values of the function under integral in the midpoints of the subintervals [42]: 
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In this connection for the midpoint rule [42]: 
 

                                                                 xwj ∆= .                                                          (5.1.14) 
 

In the trapezoid rule the function under integral is approximated by the piecewise linear 
function. The corresponding distribution of the jx  points is given by the formula [42]: 
 

                                                      ( ) xjxx j ∆−+= 1min ,                                                  (5.1.15) 
where [42]: 
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The weighting coefficients are determined by the expression [42]: 
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Discretization of the equation (4.1.1) with use of the collocation method and numerical 
quadrature, based on equations (5.1.8) and (5.1.9) results in the following system of linear 
algebraic equations [42]: 
 

                                       ( ) ( ) ( )∑
=

==
q

j
jjijii xgxyKwyhh

1
, ,…… pi ,,1…= .                     (5.1.18) 

Denoting: 
                                                 ( )jj xgg = ,…… qj ,,1…=                                              (5.1.19) 
and 
                                     ( )jijij xyKwk ,= ,      pi ,,1…= ,      qj ,,1…= ,                         (5.1.20) 
 
one obtains the equation (5.1.6) but with different meaning of the vectors and the matrix. 

Thus, discretization of Fredholm integral equation of the first kind (4.1.1.) results in a 
system of algebraic linear equations of the form of expression (5.1.6) regardless of the method 
of discretization. 
 
5.2. Ill-conditioning of discretized inverse problems formulated in terms of Fredholm 
integral equation of the first kind 
 

The equation (5.1.6), which is the discretized form of Fredholm integral equation of the 
first kind, may be considered as a special case of the equation (3.1.1) where the operator K is 
a linear operator mapping Euclidean q-dimensional space G  into another Euclidean space H. 
The operator K is represented by the matrix K. 

Similarly to the general case considered in Section 3.2, the measurement yields some 
approximation of the vector h  denoted h~  which in general does not belong to the image of 
the operator K, i.e. to the column space of the matrix K [41]. Hence, the Eq.: 
 

                                                                         Kgh =~                                                       (5.2.1) 
 

may not have the solution for arbitrary h~ . However, the generalized solution (quasisolution) 
ĝ  can be found in this case. The definition of the generalized solution is derived from the 
general definition (3.2.2) by assuming that the metric (distance) is represented by the 
Euclidean norm [41]: 
                                                                { }

2

~minargˆ Kghg
g

−= .                                       (5.2.2) 
 

Vector gKˆ  is the orthogonal projection of the vector h~  onto the linear space spanned by 
columns of the matrix K and consequently ĝ  is the representation of this projection in the 
basis formed by columns of the matrix K. This can be expressed by the equation [48, 49]: 
 

                                                                    ( ) 0ˆ~ =− gKhKT .                                             (5.2.3) 
 

The solution ĝ  is unique only if all columns of matrix K are linearly independent, i.e. if 
matrix K has full column rank [48, 49]: 
 

                                                                        pqr ≤= .                                                    (5.2.4) 
 

Then the solution ĝ  is given by the equation [48, 49]: 
 



                                                                ( ) hKKKg ~ˆ 1
OLS

TT −
=                                            (5.2.5) 

 
and is called ordinary least squares (OLS) solution of the equation (5.2.1). 

If the matrix K has not full column rank: 
 

                                                                         qr < ,                                                         (5.2.6) 
 

infinitely many solutions ĝ  exist which form ( )rq − -dimensional manifold [48]. If certain 
vector 0ĝ  is a solution of the equation (5.2.3), also a vector: 
 

                                                                    null01 ˆˆˆ ggg += ,                                                (5.2.7) 
where: 
                                                                     Kg kerˆ null ∈ ,                                                  (5.2.8) 
 
is a solution of the equation (5.2.3). However, from the multitude of solutions the one can be 
chosen uniquely which has the smallest Euclidean norm [48]: 
 

                                                               { }
2ˆMNLS ˆminargˆ gg

g
= .                                          (5.2.9) 

 
The solution (5.2.9) is called the minimum norm least squares (MNLS) solution of the 

equation (5.2.1) or the pseudosolution of the equation (5.2.1). The vector MNLSĝ  is orthogonal 
to the kernel of the matrix K. 

It can be shown that the solution MNLSĝ  is given by the expression [48, 49]: 
 

                                                                    hKg ~ˆ MNLS
+= ,                                               (5.2.10) 

 

where +K  denotes so called pseudoinverse of the matrix K, which is defined as the matrix 
satisfying the following conditions [49]: 
 

                                                         1.  KKKK =+                                                      (5.2.11a) 
 

                                                         2.  +++ = KKKK                                                   (5.2.11b) 
 

                                                         3.  ( )T++ = KKKK                                                 (5.2.11c) 
 

                                                         4.  ( )TKKKK ++ = .                                               (5.2.11d) 
 

The pseudoinverse can be determined based on the singular value decomposition (SVD) of 
the matrix K which is given by the equation [6, 42, 46, 48-50]: 
 

                                                                         TUSVK = ,                                              (5.2.12) 
 

where: U – orthogonal matrix of size pp × , V – orthogonal matrix of size qq × , S – matrix 
of size qp ×  of the form [6, 42, 46, 48-50]: 
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whereas:Σ  – diagonal matrix of size rr × , where r  – the rank of the matrix K, lk ,0  – matrix 
of size lk ×  containing only zeros. Diagonal elements of the matrix Σ  called singular values 



of the matrix K are positive and arranged in the decreasing order: 021 >≥≥≥ rσσσ … . 
Columns of the matrix U and V denoted nu , pn ,,1…=  and nv , qn ,,1…= , respectively, are 
singular vectors of the matrix K. 

The pseudoinverse is given by the expression [49]: 
 

                                                                         TUVSK ++ = ,                                         (5.2.14) 
where: 
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Substituting the expression (5.2.15) into (5.2.14) and then (5.2.14) into (5.2.10) one can 

obtain the following equation [6, 42, 46]: 
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The formula (5.2.16) is the equivalent of the formula (4.3.11) for the discretized version of 

the inverse problem. It describes the expansion of the vector MNLSĝ  into the Fourier series of 
orthonormal vectors nv , rn ,,1…= . The expansion coefficients are corresponding 

coefficients of expansion of the vector h~  into the series of orthonormal vectors un, 
rn ,,1…= , given by expression hu T

i , divided by corresponding singular values nσ , 
rn ,,1…=  [6, 42, 46]. 

As discussed in the Section 4.3, the cause of ill-posedness and related ill-conditioning of 
the inverse problem formulated in terms of Fredholm integral equation of the first kind is the 
fast rate of decaying the singular values nσ  of the integral operator with n, so that they 
approach zero for bigger n. This property is inherited by the discrete approximation of the 
integral operator which is represented by the matrix K in the equation (5.2.1) [6, 42, 46]. In 
this connection, the frequently observed and common property of the matrix K is that [46]: 
− singular values nσ , rn ,,1…=  of the matrix K decay very quickly with n and approach 

zero for bigger n; 
− the singular vectors nu  and nv  tend to have a more and more oscillatory nature, i.e. more 

and more sign changes. 
Assuming that the vector h~  is corrupted by additive noise, being the resultant effect of 

measurement errors and round-off errors, one can write [6, 46]: 
 

                                                                       ehh +=~ ,                                                   (5.2.17) 
 
where e is a stochastic process representing the noise. Substituting the expression (5.2.17) to 
the equation (5.2.16) yields: 
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where MNLSg  – the true minimum norm least squares solution, i.e. the minimum norm least 
squares solution for the case without the noise. The formula (5.2.18) is the equivalent of the 
formula (4.3.14) for the discretized version of the inverse problem. Like in the continuous 



case, the coefficients eu T
n  of the expansion of the vector e into vectors un are approximately 

constant for rn ,,1…= , whereas the coefficients hu T
n  of the expansion of the vector h into 

vectors un decay quickly with rn ,,1…= , because of smoothness of the true measurement 
data h. According to the equation (5.2.18) the higher-frequency terms of the expansion of the 
vector MNLSĝ  into vectors nv , i.e. the terms for bigger n, are dominated by the contribution 

from noise as a result of dividing coefficients eu T
n  of significant values by very small 

singular values nσ . Therefore, the error of the solution given by the term r in the formula 
(5.2.18) is tremendous in terms of Euclidean norm 

2
r  and overwhelms the true solution 

MNLSg  even for a small measurement error 
2

e . This effect of amplification of measurement 
errors in the solution demonstrates ill-conditioning of the discretized inverse problem 
formulated in terms of Fredholm integral equation of the first kind [6, 42, 46]. 

The direct cause of ill-conditioning of the discretized version of the inverse problem is that 
the least singular values are very close to zero, which means that corresponding columns or 
rows of the matrix K are nearly linearly dependent [6, 41, 42, 46, 51]. Because the singular 
values of the matrix K are known only approximately they can be indistinguishable from zero 
within the framework of a given accuracy. This causes that the rank of the matrix K is not 
strictly defined [41, 46, 51]. The matrix K with the rank r  is close to the matrix K′  with the 
rank rr <′ . In other words, the problem is nearly underdetermined. 

Ill-conditioning causes that the uncertainty interval of the solution MNLSĝ  is very wide at 
even a narrow uncertainty interval of the data vector h~  [6]. Because of the very wide 
uncertainty interval of the solution MNLSĝ  this solution is quasi-nonunique. Hence, from the 
qualitative point of view the condition of agreement of the solution MNLSĝ  with the data vector 
h~  in terms of the criterion (5.2.2) as well as the condition of minimal norm (5.2.9) are 
insufficient to determine the solution MNLSĝ  with satisfactory accuracy, because a wide 
interval of the solutions satisfies these conditions within the framework of assumed accuracy 
[6]. In order to find a unique solution with satisfactory accuracy, an additional condition 
resulting from a priori knowledge about the sought-for solution needs to be imposed on the 
sought-for solution. Various forms of a priori conditions are applied for this purpose [5, 6]. 

In the Section 4.3 it was proved that the source of ill-posedness and ill-conditioning of the 
inverse problem formulated in terms of Fredholm integral equation of the first kind is the 
smoothing property of the integral operator. This property is reflected in the discretized 
version of the inverse problem and causes that unrealistic high-frequency oscillations are 
present in the minimum norm least squares solution. Hence, a natural a priori condition which 
can be imposed on the sought-for solution in order to counteract the effects of ill-conditioning 
is smoothness of the sought-for function ( )xĝ  and consequently smoothness of the vector 

MNLSĝ  which is the discrete representation of the function ( )xĝ  [6, 42, 46]. The condition of 
smoothness results also from the fact that in the inverse problem in indirect measurement the 
function ( )xg  represents changes of some physical quantity with some variable and hence 
tends to be smooth. Various measures of lack of smoothness of the vector MNLSĝ  are applied. 
The most common ones are the Euclidean norms of the following vectors: the vector MNLSĝ , 
the vector of first, second and third order differences of the vector MNLSĝ , which are discrete 
approximations of the first, second and third derivative of the function ( )xĝ , respectively, and 
the difference of the vector MNLSĝ  and certain a priori assumed initial solution [6, 42, 46]. 



6. Selected numerical methods for solving inverse problems formulated in terms of 
Fredholm integral equation of the first kind 
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Fig. 6.1. General classification of the inverse methods with examples of techniques belonging to particular 

groups. 
 

Many numerical inverse techniques were elaborated for solving the inverse problem 
formulated in terms of Fredholm integral equation of the first kind. Each of these procedures 



utilizes a specific form of a priori knowledge about the sought-for solution in order to 
counteract the effects of ill-conditioning. The general classification of the inverse methods is 
presented in Fig. 6.1 [6, 42, 46]. 

The classification presented in Fig. 6.1 is not complete and it aims only at indicating the 
most important groups of numerical inverse techniques applied for solving the inverse 
problem formulated in terms of Fredholm integral equation of the first kind with the most 
significant representatives of particular groups. 

The linear inverse methods consist in performing some linear operation (direct 
regularization) or sequence of operations (iterative regularization) on the vector h~  of 
measurement data in order to find the solution vector ĝ . Direct regularization aims at finding 
the best approximation of the inverse operator which improves the numerical conditioning by 
applying a priori information on the sought-for solution [6, 28, 29, 31, 42, 46]. In general, 
regularization consists in converting the original ill-conditioned inverse problem into the new 
“nearby” inverse problem characterized by better conditioning, which results in decreasing 
the enormous uncertainty of the solution at the cost of deteriorating its agreement with the 
measurement data. Many direct regularization techniques can be formulated in singular value 
decomposition (SVD)  or generalized singular value decomposition (GSVD) of the matrix K 
in the equation (5.2.1). In this approach regularization is realized by modifying the singular 
values or generalized singular values of the matrix K within the procedure called filtration 
[50, 52, 53]. Various schemes of filtration were elaborated including truncating the smallest 
singular values or generalized singular values [29, 54-56] and Tikhonov regularization, also 
known as Twomey-Phillips regularization [29, 41, 43, 57-59, 60]. Tikhonov regularization 
can be also formulated in terms of minimization of the sum of the term being the measure of 
discrepancy between the sought-for solution and measurement data and the term being the 
measure of deviation of the sought-for solution from a priori assumed characteristics [29, 41, 
43, 57]. The truncated SVD procedure and Tikhonov regularization are also employed in the 
field of parameter estimation in statistics where they are called principal components 
regression (PCR) [61] and ridge regression, [62, 63] respectively. The direct regularization 
techniques are also represented by maximum entropy regularization based on the concept of 
entropy from information theory [6, 64] as well as by truncated total least squares (TTLS) 
method [65, 66] and partial least squares (PLS) method [67]. The iterative regularization 
techniques are represented by the conjugate gradients (CG) method [68] and by the LSQR 
method [69]. 

The key aspect of regularization is to determine the degree of regularization of the inverse 
problem, i.e. how much the a priori condition influences sought-for regularized solution 
compared to the condition of agreement of sought-for regularized solution with the 
measurement data. Increasing the degree of regularization improves the conditioning of the 
problem but at the same time causes that the regularized problem becomes more and more 
different from the original problem. This results in a smaller degree of uncertainty of the 
regularized solution at the cost of bigger deviation of this solution from the true solution, i.e. 
bigger bias or systematic error of the solution. The augmented degree of regularization 
increases the discrepancy between the solution and measurement data (more accurately – 
between the output of the mathematical model of measurements for particular solution and 
measurement data) called prediction error [70]. Hence, the optimal level of regularization has 
to be selected by means of trade-off between improving the numerical conditioning of the 
problem and keeping the discrepancy between regularized solution and measurement data 
within the acceptable range. In this connection, many numerical techniques were elaborated 
for this purpose. The most popular procedures are the discrepancy principle [6, 42, 44], 
generalized cross-validation (GCV) [6, 42, 71] and L-curve criterion [6, 42, 72]. Algorithms 
for truncated SVD method are described in [73]. 



Nonlinear iterative methods determine the solution by iterative corrections of an initial 
solution assumed a priori. These corrections are of nonlinear nature and their direction and 
magnitude is selected so that the solutions from consecutive iterations are characterized by 
better and better agreement with the measurement data. Therefore, the process is convergent 
to the true solution of the inverse problem [6]. The most popular representatives of this group 
of inverse procedures are: Chahine algorithm [29, 74], Twomey algorithm [75, 76] and its 
enhanced version – Twomey-Markowski algorithm [77]. 

Mixed linear-nonlinear techniques combine direct regularization with nonlinear iterative 
corrections. Within the Ben-David and Herman method an original discrete inverse problem 
is replaced by the discrete problem of reduced dimensionality formulated in terms of 
correction coefficients. The new problem is solved directly which yields a vector of correction 
coefficients. Subsequently this vector is used for nonlinear iterative corrections [6, 78]. 

Artificial neural networks (ANN) are also employed for solving inverse problems. An ANN 
is taught (by corrections of its weighting coefficients) the mathematical model of 
measurements (3.1.1), more specifically – the mapping of the vector g into the vector of 
measurement data h. Then the taught ANN acts as an inverse model, i.e. when the vector h~  is 
passed to the input of the ANN the solution vector is obtained in the output of the ANN [29]. 

The Bayesian techniques, as distinct from other inverse procedures, do not solve the 
inverse problem explicitly. In these methods one assumes a certain a priori probability 
distribution of the sought-for vector g. This distribution reflects the uncertainty of a priori 
knowledge about the sought-for solution of the problem. Subsequently, actual measurement 
data h~  are used for updating the a priori knowledge about the solution. It is done by 
determining the conditional probability distribution of the sought-for vector g on condition 
that the measurement yielded particular data h~ . This resultant probability distribution, called 
a posteriori probability distribution, is probabilistic information on the solution. Based on this 
probability distribution one can determine various estimators of the solution [6, 64, 79]. 
Maximum a posteriori probability (MAP) estimator is the vector MAPĝ  for which a posteriori 
probability attains its maximum [6, 64, 79]. Minimum variance Bayesian (MVB) estimator 

MVBĝ  is the conditional expected value of the vector g on the condition that particular 

measurement data h~  were observed [6, 64, 79]. In reality Bayesian inverse techniques are 
realized by means of Monte Carlo simulations [6, 26, 27, 29, 64, 79, 80]. In this case, in order 
to obtain a posteriori probability distribution of vector g a statistical analysis is performed of a 
great number of outputs h of the mathematical model of indirect measurements computed for 
vectors g sampled from a priori probability distribution [6, 26, 27, 29, 64, 79, 80]. 

Apart from the presented numerical inverse procedures, also analytic methods of solving 
continuous inverse problem formulated in terms of Fredholm integral equation of the first 
kind are employed. Examples of such techniques are: method of moments [33] and integral 
transform method [34]. 

An useful technique for improving the numerical conditioning of the examined inverse 
problem is reduction of the complexity of the model by means of e.g. aggregation or selection 
of parameters [81]. 

In the case when sought-for quantities are known to satisfy certain constraints expressed by 
equations and inequalities one has to apply inverse methods based on constraint minimization 
techniques [82-85]. 

Global optimization techniques of are also employed for solving ill-posed and ill-
conditioned inverse problems. Methods based on genetic algorithms are the most popular 
among these techniques [9-12]. 

Detailed presentation of particular numerical inverse techniques goes beyond the scope of 
the present review paper and can be the subject of another review paper. 



 
7. Conclusion 
 

The present review paper aimed at presenting the inverse problem in indirect measurement 
and – in particular – inverse problem formulated in terms of Fredholm integral equation of the 
first kind. 

Many properties of real-world systems cannot be measured directly. Information on these 
properties can only be obtained as a result of indirect measurement which consists in direct 
measurement of other quantities followed by inference on sought-for quantities from directly 
measured quantities. The process of inference, called inverse problem in indirect 
measurement, is based on the mathematical model of the measurement system which is a 
mathematical relation between unknown quantities and measured quantities. In general, an 
inverse problem consists either in determining characteristics of a system under study, driven 
by controlled or known exciting signals, or in reconstructing exciting signals acting on a 
system whose internal characteristics are known. One can distinguish continuous and discrete 
inverse problems, depending on whether the measured and sought-for quantities are 
represented by functions or by vectors (tuples), respectively. 

Very frequently nontrivial inverse problems in indirect measurements are ill-posed which 
means that they have no solution or the solution exists but is non-unique or unstable, i.e. the 
solution does not depend continuously on the measurement data. Due to measurement and 
round-off errors in measurement data many inverse problems do not have solutions in usual 
sense and hence generalized solutions, also known as quasisolutions, have to be considered 
which minimize the distance (metric) between the actual measurement data and the output of 
the mathematical model. In practice the instability of the solution (generalized solution) of an 
inverse problem manifests itself in high error amplification, referred to as ill-conditioning, 
which consists in that very small disturbances in the measurement data result in large 
disturbances in the result of inference. Consequently, the problem is quasi-underdetermined 
and its solution – quasi-nonunique. Ill-posedness and ill-conditioning result from the lack of 
information on sought-for quantities, carried by the measurement data. In other words, the 
condition of agreement of the sought-for solution with the measurement data is insufficient 
for determining the unique solution with satisfactory accuracy. Therefore, a priori knowledge 
about the space of admissible solutions has to be employed for solving such inverse problems. 

The review paper was focused on a broad class of inverse problems formulated in terms of 
Fredholm integral equations of the first kind. Inverse problems of this type arise in many 
areas such as: computerized transmission tomography utilized in medicine, engineering and 
science, geophysical researches, spectrophotometric researches, particle sizing, digital signal 
processing and many other measurement, imaging and diagnostic techniques. In the paper ill-
posedness and ill-conditioning of the original continuous version of these problems were 
analysed at the level of functional analysis. Smoothing properties of the Fredholm integral 
operator were indicated as a direct cause of ill-posedness and ill-conditioning. In the 
following parts of the review paper various techniques of discretization of Fredholm integral 
equation of the first kind were discussed. A concept of pseudosolution of discretized version 
of the problem and its ill-conditioning was explored based on singular value decomposition 
(SVD). Finally, selected groups of numerical methods of solving the discretized version of the 
inverse problem formulated in terms of Fredholm integral equation of the first kind were 
presented concisely. 
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